| Login

Resource Library

Keyword
GO
Categories










Industries














1237 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Addressing Design Development Challenges Through Simulation Driven Platform
Automotive suppliers are facing many challenges in having in-house simulation capabilities compared to that of OEM’s. One of the ways to overcome these challenges is to invest in simulation technologies that require an affordable initial investment, the ownership cost of which is low, the codes are reliable & proven, and the suite of tools provide suppliers access to a broad range of solvers (a true multi-physics environment) helping them pick and choose the solvers as per their simulation requirements. In the early stage of in-house simulation implementation at Endurance Technologies, HyperWorks was being adopted primarily for pre and post processing due to its extraordinary FE modeling solutions. With constant support, Altair team has helped Endurance in exploring and implementing various HyperWorks solvers at Endurance Technologies.

C123を活用して 電気自動車の構造設計を迅速に探索する
電気自動車のNEVS(National Electric Vehicle Sweden)が、C123を元に開発プロセスを改革したことで、NVH、安全性、耐久性といった構造性能を向上しながら、開発時間の短縮に成功。

Increasing Fidelity of Electric Engine Models
Comparison of 3 different engine models for an HEV vehicle: Park equations, full 3D Flux model, table method; later one generated by Flux2D.

Altair Bushing Models for the Automotive Industry
The Altair Bushing Model is a high level concept solution that can be used for all your vehicle applications. It has a library of sophisticated, frequency- and amplitude- dependent bushing models that you can use for accurate vehicle dynamics, durability and NVH simulations. The tool has been validated by BMW and Honda for robustly fitting measured data to analytical models and accurately simulating models.

HyperWorks improves development processes at PSA Peugeot Citroën
Challenge: Define new process that includes accurate component data

Altair Solution: Use HyperForm and RADIOSS in development process

Benefits:
  • Reduce Development Time
  • Accelerate Innovation
  • Improve Quality and Robustness


HyperWorks提升PSA标致雪铁龙开发流程
挑战: 定义一个新的流程,包含准确的零部件数据

Altair解决方案: 在开发过程中同时使用HyperForm 和 RADIOSS

优点:
  • 缩减开发时间
  • 推进创新
  • 改善质量和稳定性


Software Asset Optimization Brochure
Altair’s “Software Asset Optimization” solutions (SAO) enable visualization and analysis of global software inventories and utilization rates across facilities, divisions, departments, projects and users. Having deep domain expertise in business analytics, software licensing systems and high performance computing, Altair’s SAO solutions are tailored specifically to the unique needs and requirements of each organization.

Printed Ka-band Reflectarrays with Offset Feed
Printed reflectarrays combine the advantages of parabolic reflector antennas with microstrip arrays, yielding high-gain, low-profile, low-cost antennas with simpler feeds that are easy to fabricate. This white paper demonstrates how FEKO can be used to model a printed reflectarray and its feed.

FIAT Customer Story
FIAT chose Altair ProductDesign as a partner to perform a pilot project to investigate squeak and rattle. The project focused on studying issues on the FIAT UNO, a vehicle made exclusively for the South American market. Altair ProductDesign suggested that FIAT implement Altair’s ‘Squeak and Rattle Director’ (SNRD), a comprehensive set of services and software automations that rapidly identify and analyze design alternatives to eliminate the root causes of squeak and rattle in assemblies. With customization from the Altair ProductDesign team, the solution provides a semi-automated approach to determine relative component displacements in the time domain that can lead to undesired noise. A dedicated four day workshop facilitated a fast ramp-up of the NVH team’s knowledge of the SNRD and helped Altair to identify FIAT’s specific design process that the solution could be tailored to.

Harita Seating Standardizes on Altair Suite of HyperWorks for all CAE Applications
HyperWorks used by leading Indian manufacturer of seating systems Harita, for homologation testing, regulations and crash analysis for all commercial vehicle seats, bus passenger seats and tractor & off-road seats

Altair and Ziegler Instruments Combine Experience and Technologies to Identify and Eliminate Squeak and Rattle Issues
Altair has partnered with Ziegler-Instruments to enhance its Squeak and Rattle Director (SnRD), making it the most advanced and comprehensive solution on the market to predict and eradicate squeak and rattle phenomena in vehicles, aircraft and other products sensitive to Noise, Vibration and Harshness (NVH). The addition of Ziegler-Instruments’ PEM material database gives Altair’s SnRD clients access to the results for over 11,000 individual stick and slip phenomena for different materials pairs.

In this video, Patrick Schimmelbauer and Jens Herting of Ziegler Instruments give an overview of the partnership and what it means to companies needing to address squeak and rattle issues.

Coupled Electro-Magnetic and Acoustic Simulation of an In-Wheel Electric Motor
At Elaphe, the engineers have been facing the NVH challenges from the very beginning. The topology of this electric motor, which on the one hand enables the team to use the otherwise empty space inside the wheel, can on the other hand, result in some new and unexplored NVH challenges. The experience over the years has proven that NVH is a bottleneck in the design cycle of Elaphe's motors and this was the main motivation for a more automated and more user-friendly NVH simulation workflow. Within the NVH, noise radiation was the area Elaphe was most interested in.



Altair Impact Simulation Director Datasheet
Altair's Impact Simulation Director (ISD) solutions empower engineers and designers to simulate the impact performance of designs faster to cost-effectively produce higher-quality products. ISD solutions automate the laborious, manual tasks associated with model setup, analysis, post-processing and reporting.

HyperWorks helps to improve development processes at F.S. Fehrer Automotive GmbH
F.S. Fehrer Automotive GmbH in Kitzingen is using the HyperWorks Suite to develop seat parts, form cushions and complete vehicle interior systems. The engineers use HyperWorks and especially RADIOSS for static and modal analysis. The seat of a vehicle is the direct and closest connection of the passenger with the automobile. Design and seating comfort play an important role in personalizing the vehicle model and convey the feeling of quality to the passenger. In addition, safety and variability are vital aspects for the development of interior parts of a vehicle.

FEKO Integrated in HyperWorks 14.0
Altair’s computer-aided engineering (CAE) simulation software platform for simulation-driven innovation is Hyper- Works, which includes modeling, visualization, analysis and optimization technologies and solutions for structural, impact, electromagnetics, thermal, fluid, systems and manufacturing applications. The electromagnetics solver suite in HyperWorks is FEKO, a comprehensive electromagnetic analysis software used to solve a broad range of electromagnetic problems. It includes a set of hybridized solvers, giving the possibility to combine methods to solve complex and electrically large problems, with all solvers included in the same package.

Museum of the 20th Century
For a competition launched for the Museum of the 20th Century, Zaha Hadid Architects re-invented a similarly radical approach by applying new advances in technology to generate structural and architectural expression. With Altair’s assistance, they created a plug-in for their design tool, enabling topology optimization. Altair HyperMesh was used for finite element preprocessing mesh generation, with Altair HyperView providing post-processing and visualization solutions. Structural analysis solver Altair OptiStruct provided advanced analysis and optimization algorithms.

Altair OptiStruct Datasheet
Altair OptiStruct is an industry proven, modern structural analysis solver for linear and nonlinear simulation under static and dynamic loadings. It is the most widely used solution for structural design and optimization in all industries. Altair OptiStruct helps designers and engineers analyze and optimize structures for performance characteristics such as strength, durability, and NVH, to rapidly develop innovative, lightweight, and structurally efficient designs.

HyperWorks 14.0 Webinar: Computational Fluid Dynamics
Whether you’re an analyst performing CFD modeling every day, or an engineer with a need to understand the impact a CFD analysis will have on a proposed design, HyperWorks offers a complete suite of tools for both the expert and novice users. From detailed component analysis to full systems performance, HyperWorks is your solution for problems ranging from 100,000 to 1,000,000,000 elements in size with parallel scalable solvers and robust pre and post processing software.

In this webianr, you will learn about the new features available in Altair's flagship CFD solver, AcuSolve, as well as what's new in HyperWorks for CFD pre and post processing.

Flux Webinar: Electric Machine Design Workflow for Traction Applications
Nowadays, when modeling motors for electric vehicles, more and more constraints are to be fulfilled at the same time. The motor has to be very efficient, less noisy, avoid vibration and at the same time - not too hot and very cheap. In this webinar we will show the different tools available from pre-design, fine tune electromagnetic analysis, NVH analysis, to thermal analysis and system analysis.



The Use of Suimulation (FEKO) to Investigate Antenna Performance on Mobile Platforms
Wireless technologies have proliferated onto automotive platforms as part of infotainment, telematics and active safety initiatives. These wireless solutions present engineers design challenges in the area of applied electromagnetics in terms of antenna design, antenna placement, electromagnetic compatibility and wave propagation. The Applied EMAG and Wireless Lab at Oakland University possesses an outdoor vehicle-level antenna range (80 MHz - 6,000 MHz) and full-wave electromagnetic field solvers with high end computers to solve these issues. This presentation will highlight some of the past and recent research projects conducted in my lab that relied on a full-wave electromagnetic field solver to investigate the issue and subsequently be validated with measurements.

Toyota Motorsport
Controlling Software Costs with Altair’s Software Asset Optimization System



TMG chose Altair’s Software Asset Optimization (SAO) system to address this problem. SAO (Software Asset Optimization) enables the user easy and efficient access of the actual software usage of existing licenses in his company. He can analyze the software usage and based on this information make appropriate decisions concerning the acquisitions of new licenses and the extension of existing contracts.

2013 Altairテクノロジーカンファレンス-Day1 ワークショップ HyperWorks 1
車体モデル(NVH、衝突)作成セットアップの超効率化と高速化



  • 進化した自動メッシング(PDF) HyperMeshおよびBatchMesherの改善されたメッシュアルゴリズム、自動品質レポート、シェル要素板厚自動割り当て(MidMeshThickness)、部品入れ替えなどの新機能を紹介します。
  • 最新版 衝突、安全解析セットアップツール(PDF) 大規模モデルへの対応、インクルードファイル管理、部品入れ替えの自動処理、HyperFormと連携し初期ひずみ等を考慮したモデルの自動セットアップ、安全解析ツール、モデルチェッカーのデモを行います。
  • 車体モデルを一覧管理 - Assembly Browser(PDF) Assembly BrowserではPLMと連携し、車体の各部品情報をリストで表示、管理できます。材料、板厚などの確認、不足情報の検出およびレポート作成を自動で行うため、設計部門に簡単に素早く問い合わせを行えます。
  • メッシュを切る前から効率化 - CADエラー分析ツール(PDF) 貫通チェック、スポット溶接不具合チェック、ボルトとナットの不適合等さまざまなCADの問題を事前に検出するツール、および設計者に提出するための3次元レポートの自動生成ツールについて紹介します。
  • 流用メッシュの調査、レポート(PDF) 新規の設計において、全体の6~9割に既存部品を流用する場合があります。既存部品が流用されているかどうかを自動で検出し、レポートを作成します。
  • データ管理 - Collaboration Tools(PDF) Collaboration ToolsはHyperMesh内でCAEデータを自動で整理、検査、検索できるツールです。バージョンの管理、比較も可能で、PLMのリポジトリに接続し、CADデータを直接読み込むことができます。
【日本語字幕】Anadolu Isuzuの成功事例
Anadolu Isuzuが、NVH、熱、空力、システムエンジニアリング等にHyperWorksを使用し、品質を損なうことなく開発時間の短縮に成功しました。
*日本語字幕は、左上に表示される[CC]の部分でON / OFFを切り替えてください。

騒音振動解析ツールNVH Director
NVH Directorは、きわめて大規模かつ複雑なFEAモデルであっても、車両の騒音振動解析を短時間で完了できます。

Magneto-Vibro-Acoustic Efficient Design of PWM-Fed Induction Machines
Induction motors are widely used in the automotive industry. In order to increase the passenger’s comfort, motor designers try to develop new solutions to reduce the noise at its origin, on the electromagnetic side. Damper winding can be a solution to improve emitted vibration and noise. In this presentation, LSEE shows interesting modelling method to evaluate the impact of damper windings on the vibro-acoustic behavior of the motor considering PWM, and compares it with measurements.

* Please note this technology is patented / WO 2016207166 A1*
An LSEE & Altair presentation at SIA-CTTM Automotive NVH Comfort 2018


HyperWorks for Crash: Simulation with Radioss
Erwan Mestres (Business Development Director) is presenting a comprehensive overview of Altair's crash solution Radioss, touching on basics, model setup, safety models (such as dummies and barriers), and also analysis speed-up with e.g. scaling or sub-modelling.

Altair® HyperWorks® and Product Design Consultation at Force Protection
At Force Protection Inc. Altair HyperWorks and Product Design work together to increase CAE throughput and improve survivability prediction in a new class of military vehicles built for unconventional warfare.

Benchmark Study: Optimized Drop Testing with Dell, Intel and Altair
Dell, Intel and Altair have collaborated to analyze a virtual drop test solution with integrated simulation and optimization analysis, delivering proven gains in speed and accuracy.

Electromagnetic Interference in Automotive and Aerospace
Both the automotive and aerospace industries face ever-increasing Electromagnetic Interference challenges. In the automotive case, new problems arise due to proliferation of electric and hybrid cars, which carry high-voltage systems, and of wireless infotainment and safety systems, which use high frequencies. The aerospace industry’s challenges are exacerbated by the use of composite materials and by the need to protect against lightning strikes.
This presentation will discuss many of the challenges and explain how they can be met with simulation. A few practical examples involving cable harnesses will be analyzed in more depth.


F.tech R&D North America
F.tech is a Tier-1 automotive systems supplier, headquartered in Japan. To help the CAE team at F.tech R&D North America overcome tedious challenges related to model build and geometry preparation for weld creation, Altair developed a customized solution. Developed using Altair’s Model Mesher Director (MMD) PSO (Packaged Solution Offering), the F.tech -Pre-processing Automation Solution (F.tech-PAS) is a streamlined toolset which aids F.tech engineers in CAE meshing and assembly from CAD to solver deck.

OPEL
Improving Design Productivity through Automation



OPEL identified the design process of engine mount systems as a candidate for a process automation solution. As an objective, NVH engineers had to be able to generate input decks even without detailed load case information. Knowledge had to be captured and re-used in a standardized workflow. Automatic optimization and robustness analysis of the mount parameters had to be integrated into the process to quickly improve final product quality.

Product Development with a Multi-attribute, Single Model Workflow
This presentation discusses an efficient work-flow for multiple attribute analysis and optimization using Altair HyperWorks CAE tools with the HyperMesh pre-processor and OptiStruct solver. A single finite element model has been built with all the three subcases, i.e. NVH, nonlinear strength (permanent set) and fatigue, in the same model as different load-cases. This makes analysis and iteration processes streamlined and efficient, as no model conversion is involved. Further optimization with the required set of responses and constraints are discussed in order to achieve at light weight design with performance target for dynamic stiffness, permanent set and fatigue damage.

Introduction to HyperWorks Virtual Wind Tunnel
Altair’s HyperWorks Virtual Wind Tunnel is a new solution designed to provide better wind tunnel simulation technology and user experience. With a highly automated and streamlined workflow process and high quality CFD technology, Altair’s HyperWorks Virtual Wind Tunnel is able to more accurately and quickly predict an automobile’s aerodynamic performance.

DECKED
The huge capacity of a pickup comes at the expense of storage. The loading area is often a simple box with no ability to store smaller items safely or secure them from theft. After spotting an opportunity in the marketplace, entrepreneur, Lance Meller, started work on a well-built alternative. Lance founded DECKED with his business partner, Jake Peters, with a shared determination to create an innovative, robust and useful storage solution for both commercial users and private owners alike. The system had to be able to withstand a load of 2,000 lbs, fit it into a wide range of pickup models including those from Ford, GM, Chrysler, Toyota and Nissan and be manufactured for a compelling retail target price. DECKED selected Altair ProductDesign as it needed a partner that was able to deliver conceptual design work along with advanced engineering and prototyping services.

DECKED 成功案例
皮卡车的超大装载量要以牺牲储物空间为代价。载货区往往只是一个简单的货箱,无法安全存放较小的物品,也不具备防盗功能。因此,市场上出现了各种各样试图解决这类问题的第三方产品,产品形式通常是需要专业安装或必须经大规模改造才能正确安装的金属锁闭装置。在看准市场商机后,企业家Lance Meller开始着手开发一种更为精良的替代产品。Lance 携手商业伙伴Jake Peters 共同创办了DECKED,决心为商务用户和私家车主开发一款既坚固又实用的创新型储物解决方案。这套系统必须能够承受2,000磅的重量,同时还应足够浅,以免完全占用装货台的整个高度。此外,DECKED系统应能装入福特、通用、克莱斯勒、丰田和尼桑等各种型号的皮卡车。DECKED选择能够参与概念设计工作和提供高级工程及样机制造服务的Altair ProductDesign选为合作伙伴。

The Multiphysics Optimization Platform for e-Motor Innovation
Altair develops multiphysics simulation technologies that allow you to accelerate next generation mobility solutions development. From smart control design to powertrain electrification and vehicle architecture studies, our solutions enable optimization throughout the development cycle, all backed up by a global team of engineering consultants.



Sujan CooperStandard Achieves Lighweighting & Performance Targets with Altair
Sujan CooperStandard uses solidThinking Inspire, OptiStruct and HyperMesh to design a torsional vibration damper that meets NVH criteria, optimize bracket and various mount designs.

  •  
MotionSolve for Trucks and Busses - Analyze and Optimize Truck System Performance
MotionSolve - Altair's multi-body solution is an integrated solution to analyze and improve mechanical system performance. In the truck and bus industries, MotionSolve is used to assess system durability, evaluate and improve new suspension systems, optimize the ride and handling characteristics of vehicles, evaluate and optimize subsystem performance and validate mechatronics components.

  •  
Advanced Features for External Automotive Aerodynamics Using AcuSolve
Watch this 45-minute webinar to learn more on the use of advanced features for solving “on road” external automotive aerodynamics with Altair’s CFD solver AcuSolve. The webinar will focus on the analysis of external aerodynamics for passenger and racing vehicles while performing turning maneuvers. AcuSolve’s mesh motion capabilities, along with real time cosimulation with Altair’s multi-body dynamics solver, MotionSolve give engineers the ability to better simulate actual road conditions.

FEKO Webinar Recording : Radomes with Frequency Selective Surfaces
In this webinar we present a complete solution for the design and analysis of radomes. We also discuss in detail the challenges and the solutions to the design and analysis of Frequency Selective Surface (FSS) radomes.

Improving the Accuracy of Weather Prediction
This brochure covers the Cray-Altair Solution for Optimized HPC Resource and Workload Management – Using a Cray supercomputer with Altair’s PBS Professional scheduler provides weather prediction centers with a rich solution for optimized forecasting.

PBS Works: Improving the Accuracy of Weather Forecasts
Running HPC systems and clusters with Altair’s PBS Professional® scheduler provides weather forecast centers with a rich solution for optimized forecasting. The solution ensures high-performance computing (HPC) resources are more efficiently scheduled to increase system utilization, improve application performance and throughput, and enhance quality of service.

Altair FEKO for Marine EMC Applications
Altair FEKO is a leading comprehensive electromagnetic analysis software package, which is widely used in many industries and built on state of the art computational electromagnetic techniques to provide users with solutions to a wide range of electromagnetic problems. FEKO has been applied extensively in both commercial marine and naval applications to solve a wide range of EMC problems including antenna coupling and co-site interference analysis, cable coupling and radiation analysis and radiation hazard (RADHAZ) zone analysis.

Altair MDO Director Datasheet
A multi-disciplinary optimization (MDO) approach allows you to explore all design requirements simultaneously and achieve lighter products, faster. Until now, enabling this process on live vehicle programs has been a challenge. Altair's MDO Director is a novel set of software tools that provides a process to rapidly set up, execute, post-process and explore the design of MDO problems.

Unilever Optimizes Packaging Designs & Reduces Prototype Costs
To remain at the forefront of innovation within the male grooming market, Unilever, constantly looks for ways to differentiate their products from competitor offerings. For the Lynx (Axe) brand, Unilever needed to adopt a simulation and analysis approach when designing a new deodorant packaging concept and required a development partner to assist with the design and testing of the new can.

Altair Automated Reporting Director Datasheet
Automated Reporting Director is a novel set of comprehensive services and software automation to support the utilization of HyperWorks' post processing technologies embedded into your environment. The offering streamlines the often time-consuming tasks associated with the mechanics of results generation and reporting, allowing the engineer to focus on the interpretation and understanding of results.

Altair Squeak & Rattle Director Datasheet
Altair's Squeak and Rattle Director (SRD) is a novel set of comprehensive software automations to rapidly identify and analyze design alternatives to eliminate the root causes of squeak and rattle (S&R) in assemblies. Tailored to be deeply integrated within your environment and processes, SRD offers a complete set of capabilities to streamline the entire S&R simulation workflow process from model creation to results visualization.

Altair Model Verification Director Datasheet
Altair's Model Verification Director (MVD) allows engineering analysts to validate CAD model data received from the design teams, automatically identifying potential issues that could slow down the pre-processing stage of the simulation life cycle.

The MVD is embedded into HyperWorks pre-processing technology, HyperMesh and integrated into the Assembly Browser. The solution identifies CAD intersections, missing welds, and incorrect bolt-nut positions on an entire assembly structure and generates comprehensive reports in both Microsoft PowerPoint and Excel formats to allow for easy communication of the validation results. With this insight, the CAD design team can correct the model data and help streamline the finite element modeling process.

Modeling the Thermal Runaway Behavior of Li-ion Batteries upon Mechanical Abused Loading
This presentation demonstrates Altair’s capability of simulating the behavior of a mechanically damaged battery from a cell to a pack integrated in a vehicle, based on collaborative research previously conducted with MIT. An innovative approach of applying electromagnetics loss to predict rising temperature due to short circuit effects during an impact is discussed, along with the development of a software tool, Battery Design, which enables OEMs and suppliers to design battery applications using multiphysics optimization, including mechanical-electrical-electrochemical-thermal behaviors.

Hussmann India Achieves Greater Simulation Accuracy with Altair AcuSolve™
Hussmann provides tailored food safety solutions designed to improve food quality and integrity. As the manufacturer of refrigerated display cases and systems, they have to maintain the highest performance and quality standards of the products they develop. Using Altair solutions helped them reduce their product development time by 20 to 30% with the CFD Thermal solutions successfully addressing even the most complex problems in challenging areas that were faced in product design analysis and CFD.

電気自動車内部の騒音を軽減する
内燃エンジンを積んでいないため、電気自動車で重要となる騒音振動問題をSqueak and Rattle Directorで解決した、NEVS(National Electric Vehicle Sweden)の事例

Ford Focus STREET: Getting Real in Six Weeks
Technology partners collaborate in style to deliver a specialty vehicle based on the Ford Focus platform.

Subros Leverages Altair HyperWorks® to Build Optimized Product Designs While Reducing 60% Simulation Time and 40% Prototyping Costs
Subros is the leading manufacturer of thermal products for automotive applications in India and operates in technical collaboration with Denso. Being a major supplier of AC units to the predominant automotive segments and all classes of vehicles produced by global players in the country, it is very important for Subros to honor deadlines of product delivery with agreed benchmarks of quality. The Subros team has used Altair solutions such HyperMesh for FE modeling, RADIOSS and OptiStruct for structural analysis, AcuSolve for flow analysis, and solidThinking Inspire for Modal Analysis

Virtual Drive Tests for ADAS Radar Sensors and Communication Antennas
This webinar shows how Altair WinProp considers the full environment including buildings, cars, street objects in order to get accurate representations of the radio waves impinging on the installed car antennas and the multipath radar channels including reflections, diffractions and scattered contributions. For the efficient analysis the car objects can be also replaced by their corresponding radar cross sections (pre-calculated in Altair Feko). Thus allowing the realistic and fully reproducible evaluations of different options for the antennas and sensors including their integration and configuration.

Griiip
Israeli motorsport company Griiip has designed a new, fast and professional race car that combines efficiency in racing with a competitive purchase price and low running costs, to make it more affordable. By harnessing the power of data, Griiip has created the first smart connected race car – the G1 – and with it, an entirely new racing series. Accessing the software via Altair's new Startup Program, Griiip engineers employ several products from the Altair HyperWorks™ suite, among these Altair Radioss™ for crash simulation, Altair OptiStruct™ for structural optimization, general FE analysis as well as Altair HyperMesh™ and Altair HyperView™ for pre- and post-processing tasks in the development of race cars.

Developing Efficient Design Procedures for Wideband, Low-profile Antennas Using Altair FEKO Electromagnetic Simulation Technology
Low profile, concealed antennas are frequently desired for diverse applications across many military and commercial vehicle platforms. A vehicle underside can be considered a viable alternative place for concealment as it provides enough space to avoid extreme antenna miniaturization. A study conducted at the Antenna Research Group (ARG) at the University of Colorado evaluated the bottom side of the vehicle as an alternative to more conventional antenna placement positions for mounting high-frequency VHF antenna systems. Altair FEKO EM field simulation methods were applied to assess antenna performance.

A Multifunctional Aerospace Smart Skin Emerges from Computational Models and Physical Experiments
The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, government agencies, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into “smart” vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ.

Brake Noise Prediction Using Altair Multi-body Simulation
The level of noise transmitted to the passengers of a vehicle can drastically impact a passenger’s comfort. Brake noise will give the customer an impression of poor product quality and can thus damage the quality image of the company. Within the automotive industry,
the study of mode coupling instability by the use of FEM and modal complex analysis is widespread to reduce this phenomenon.


2015JATC_Altair's Approach to Model-Based Development [英語]
Altair's Approach to Model-Based Development / Altair, Michael Hoffmann

HyperWorks为工程服务提供商Beta Epsilon提供灵活性和便捷性
Beta Epsilon设计赛车并提供工程服务。Beta Epsilon提供零部件和整车的建模、金属和复合材料部件的有限元分析、碰撞测试仿真、优化和CFD仿真。Beta Epsilon采用HyperMesh、OptiStruct、HyperCrash、RADIOSS、AcuSolve、HyperView和虚拟风洞。利用HyperWorks,Beta Epsilon可以提高产品质量和扩大其服务范围。

Teaching Aerospace Design Optimization
Engineers develop design and analysis skills through application of principles, methods, and tools to the solution of complex, often ill-defined problems. Engineering training that focuses on simple, focused component-level applications teaches some portion of the skills needed to execute real world problems but is incomplete. Altair has experience both deep and broad in applying optimization technologies and has developed a training curriculum aiming to teach engineers more comprehensive design optimization skills and knowledge in aerospace applications. The Altair Aerospace Optimization Academy has been developed as a series of online modules to develop deep design and optimization knowledge and skills in engineers that have basic structural analysis and finite element experience. The training curriculum leads students through complete design cycles using Altair’s advanced optimization technologies and explores the different approaches that engineers can use to develop aerospace designs for a variety of metallic and composite components and configurations.

Simulation Driven Weight Saving in Stamping
Dr. Subir Roy Director - Industry Solutions, Altair

With increasing regulation on fuel consumption and emission standards, weight saving has become one of the most important topics for automotive sheet metal design. Advanced high strength materials are becoming more prevalent for new vehicle models to reduce weight while enhancing structural performance.

HyperWorks provides flexibility and agility to development processes of Engineering Services Provider Beta Epsilon
Beta Epsilon designs racing cars and offers engineering. Beta Epsilon offers component and vehicle meshing, FEA analysis of metal and composite components, crash test simulation, optimization, and CFD simulation. Beta Epsilon uses HyperMesh, OptiStruct, HyperCrash, RADIOSS, AcuSolve, HyperView, and Virtual Wind Tunnel. With HyperWorks, Beta Epsilon could improve the quality of its products and extend its range of services.

Aeroswift
The South African aviation manufacturing solutions provider Aerosud and the South African Council for Scientific and Industrial Research (CSIR) teamed up to launch a challenging 3D printing project, Aeroswift. Aeroswift collaborated with Altair to develop a methodology for designing large additively manufactured products. An Unmanned Aerial Vehicle (UAV) frame was designed as a demonstration and subsequently printed on Aeroswift. To improve manufacturability while meeting all component requirements, the project engineers used Altair Inspire™ and its topology optimization capabilities in the design process.

Big Metal Printing – Realising the Potential of Additive Manufacturing
The South African aviation manufacturing solutions provider Aerosud and the South African Council for Scientific and Industrial Research (CSIR) teamed up to launch a challenging 3D printing project, Aeroswift. Aeroswift collaborated with Altair to develop a methodology for designing large additively manufactured products. An Unmanned Aerial Vehicle (UAV) frame was designed as a demonstration and subsequently printed on Aeroswift. To improve manufacturability while meeting all component requirements, the project engineers used Altair Inspire™ and its topology optimization capabilities in the design process.

Fuel Economy Simulations
Activate model of a series-parallel hybrid electric vehicle powertrain to evaluate fuel economy and system performance.

Generic Modeling Improvements with MotionSolve
Many other enhancements in this release were designed to enable users to assemble and solve models to evaluate product behavior much faster, especially for vehicle simulations.


Minimising Interior Noise in Electric Vehicles
National Electric Vehicle Sweden (NEVS) leverages use of the Altair Squeak and Rattle Director in identifying and minimising risks of interior noise in electric vehicles.

LEIBER Group
LEIBER Group, which specializes in developing lightweight metal components, applied topology optimization to determine the ideal shape for a vehicle suspension beam, resulting in mass savings of over 50%

Cross-Coupling between a 3G Transmitter & a Cable Bundle
This white paper demonstrates how the cable modeling interface in FEKO was used to compute cross-coupling effects between a cable bundle and 3G antenna mounted on a vehicle.

HyperWorks Improves Development Processes at Automotive Consultancy
csi entwicklungstechnik GmbH, a leading engineering service provider for the automotive industry has enhanced its simulation power with Altair‘s HyperWorks Suite. The company consolidated its CAE tools and now uses the large scale of HyperWorks, which offers a solution for almost every application needed in modern product development. csi will apply OptiStruct for optimization tasks, MotionView and MotionSolve for multi-body applications, and HyperMesh for pre-processing tasks. Additionally HyperShape/CATIA will be used for CAD integrated optimization and weight reduction.

Clemson University Chooses PBS Professional for HPC Workload Management
Clemson University's IT department, Clemson Computing and Information Technology (CCIT), selected PBS Professional over open-source alternatives for mission-critical workload management. "We were looking to fulfill two requirements that our open source scheduling tool could not handle – reliability/scalability and technical support. After evaluating workload management vendors, Altair’s PBS Professional scheduling software came out on top as the solution that met our HPC needs."

Altair Weight Analytics Datasheet
Altair's Weight Analytics (WA) solution manages the entire Weight and Balance (W&B) process empowering engineering and management teams to control and ensure W&B attributes meet program requirements. Deployed as a common weight management tool across the enterprise, WA enables faster and more accurate decision-making with on-demand access to visualize, analyze and predict W&B at any point in time during the entire Product Lifecycle (PLC).

HyperWorks 2017: Optimization Driven Design
Design optimization manifests itself in all levels of Altair’s offerings; software, product design and packaged solutions. This is all carefully planned and implemented so that the engineers and analysts can benefit from these functionalities without leaving their native environments.

Altair Virtual Wind Tunnel Datasheet
Altair’s Virtual Wind Tunnel (VWT) is a vertical application tailored for external aerodynamic studies. Designed with the users’ needs in mind, the graphical user interface provides easy access to problem definition and solution strategies. The automated and customizable report generation after each simulation run provides a consistent method for design evaluation.

Using Advanced Simulation to Design Leading Motorcycles
Rod Giles, Group Manager CAE & CAD presents at the UK ATC 2019. Royal Enfield has and is undergoing a massive transformation, not only in the sales and manufacturing departments, but also in the way the motorcycles are designed and developed. Leading the way in the development of all new motorcycle platforms is the use of advanced Computer Aided Engineering (CAE) tools. At Royal Enfield we use a wide array of different tools and techniques. The primary tool for model preparation and analysis is Altair Hyperworks. Rather than trying to cover the vast range of analyses carried out, today I will concentrate on some examples where advanced techniques have helped the design process including using smooth particle hydrodynamics (SPH) in explicit analysis to evaluate fuel tank integrity, using NVH director to evaluate and improve transfer path analysis (TPA) to aid the rider comfort, using topology optimisation to reduce mass and improve structural performance of engine and chassis components, and using MotionSolve to understand complex mechanism dynamics.


Delivering World Class Chassis Design
This paper details the extensive use of CAE optimisation technology at ThyssenKrupp Automotive Tallent Chassis Ltd (TKA). There are a number of trends in the automotive business that are presenting great challenges, these include severe cost pressures from OEM’s, platform commonisation and reduced vehicle development cycle time. The use of optimisation is critical for TKA to maintain its competitiveness, this paper deals with more advanced concepts of optimisation by extending into the severely non-linear region of analysis types.

HyperWorks Enables Global Appliance Manufacturer to Use New Material for Stronger, Lower-Cost Product
To qualitatively and quantitatively analyze the stress on the door cover during thermal expansion and contraction, the engineers used HyperMesh, a high-performance finite element pre-processor and RADIOSS, a modern structural analysis and optimization solver, both of which are part of Altair’s HyperWorks suite of computer-aided engineering tools. With these tools, engineers created a computerized simulation of the refrigerator door cover temperature field, employing HyperMesh to create a finely meshed model of the upper and lower covers, while shell elements were used to mesh the steel plate and interior lining, along with solid elements for the foaming material.

Significant Weight Reduction by Using Topology Optimization in Volkswagen Design Development
Using Altair’s topology and topography optimization as an integrated part of their design process, Volkswagen is able to reduce mass of engine components by 20% and more

Stanley Black & Decker Case Study
Stanley Black & Decker chose Altair’s HyperWorks Unlimited to optimize their CAE processes for power tool design, enabling them to explore concepts more deeply, reduce cycle times and make better decisions faster.

Optimization Drive Design - A Desktop Engineering Sponsored Report
Optimize every stage of product development with an integrated workflow that democratizes simulation and analysis. In this Desktop Engineering sponsored report Altair's vision for product optimization is analyzed

Display Manager: Remotely Visualize Your Datasets for Rapid Collaboration and Innovation
This datasheet covers the benefits, features and capabilities of Display Manager, Altair's web-based 3D visualization portal.

Hyperworks X: Morphing Examples on a Turbine Blade
This brief demo shows the easy accessibility to morphing in HyperWorks X. Different examples are shown to explain, how to take advantage of Altair's morphing technology.

10 Things You Didn't Know You Could Do In Altair OptiStruct
You know Altair OptiStruct as the leader in topology optimization, but did you know that the use of OptiStruct for nonlinear structural analysis has been increasing rapidly at leading companies? Teams are benefiting from a modern solver technology with linear and nonlinear capabilities – backed by Altair’s industry leading support – while reducing costs through the unique value of HyperWorks Units.

Simulation Manager Datasheet
Altair’s Simulation Manager allows users to manage the life cycle of simulation projects through an intuitive web based portal. Guidance for different aspects of a simulation project life cycle are provided to the user, starting from project creation, setting up of Key Performance Targets (KPT), modeling, job submission, analysis, extraction of Key Performance Indicators (KPI), subsequent validation and powerful dashboards.

APWorks Light Rider: Optimization Process
First 3D-printed Motorcycle by APWorks (Airbus Group) called Lightrider. Altair's software OptiStruct was used for inspiration of the organic structure of the motorcycle.

  •  
HyperWorks Enables Ingeniacity to Reduce Mass of Sailing Yacht Composite Bowsprit by 65%
Altair's HyperWorks Suite provided the pre-processing, optimization and FE-solving tools to help create a new bowsprit design that was 34kg lighter than the previous model

OptiStruct is 17x faster with the latest Dell Precision Workstation
The reduction of run times up to 17X is a direct result of more powerful hardware and the more advanced algorithms in Altair’s latest software releases.

Altair Geomechanics Director Datasheet
Altair's Geomechanics Director (GeoD) allows engineers and scientists, especially in the Rock Mechanics and Geology groups at Oil and Gas companies, to build finite element models from subsurface geology quickly and efficiently.

Approaching Learning Differently at Nelson Mandela University in South Africa
Watch this short video to find out how the Faculty of Engineering is approaching teaching differently with the help of Altair's learning tools.

  •  
Sujan CooperStandard Achieves Lightweighting and Performance Targets with Altair
Sujan CooperStandard manufactures (anti-vibration) NVH products for leading automotive companies. Currently, the automotive industry is under extreme pressure because of environmental norms and has to adhere to stringent government policies related to pollution control and one of the simplest ways to address these is to optimize designs and reduce weight of products and components. They began using Altair HyperWorks on the on the recommendation of their joint venture partner CooperStandard. The team decided to improvise design of their Torsion Vibration Damper using Altair solutions like solidThinking Inspire to optimize designs of the brackets and OptiStruct for structural integrity of the designs. Altair solutions have helped Sujan CooperStandard get their product designs right the first time and consistently meet their time, cost and quality targets.

Squeak and Rattle Prevention - Why You Should Not Wait for Your First Prototype
This presentation will discuss how the industry challenges for S&R can be answered using NVH best practices and turn cost avoidance to cost reduction. Altair and ZIEGLER will discuss how to successfully integrate CPA, FE simulation and optimization in the heart of the virtual engineering phases, using the right technology and processes.

This presentation by Patrick Schimmelbauer, Managing Director at Ziegler was recorded at the 2017 Americas ATC East in Detroit, MI.

Ford's Thoughts on Relationship with Altair for Lightweighting
John Viera, Global Director, Sustainability and Vehicle Environmental Matters at Ford Motor Company, gives his thoughts on the relationship with Altair and its importance as the company continues to drive down vehicle weight.

Meet your Energy Efficiency Goals in your Electrification Projects with Simulation
Electrification is one of the main means of creating a low-carbon economy, allowing to use renewable energies and energy efficient technologies. Electric power enters many industries and also impacts our everyday lives, especially with the electric mobility. The use of power electronics and control systems allows offering better reliability, safety and low maintenance costs, and also brings additional innovative functions. Learn how Altair simulation and optimization tools can help designing highly efficient electric machines, as well as advanced control strategies to help you build innovative and energy efficient electric solutions.

Scania 成功案例
卡车驾驶室研发过程中的异响现象仿真



汽车行业通过研究异响现象试图降低驾驶室的噪音,从而提高驾驶质量,让乘客能够更舒适。Scania 的驾驶室开发部从未进行过此类仿真。团队人员不得不依赖于公差计算和选材来降低异响风险。为缩短开发周期并减少迭代更改,一种理想的解决方案应运而生,这种方案能够在驾驶室开发周期的早期阶段实施由仿真技术支持的设计。

仿真工具:驱动设计未来
克莱姆森大学的Deep Orange 3 项目面向未来工程师引进了强大的分析软件,帮助他们开发新型跑车的概念架构。



By Dr. Paul Venhovens

Concept To Reality Winter 2013 Subscribe to C2R Magazine

Scania Customer Story
Squeak and rattle phenomena are studied in the automotive industry in an attempt to reduce the cabin noise and as a result, give a better ride quality and comfort to occupants. In the case of Scania’s Cabin Development Department, this kind of simulation was not performed historically. The team had to rely on tolerance calculations as well as the choice of materials to reduce the risk of squeak and rattle. To reduce development time and cut down on iterative changes, a desirable solution was identified that enabled a simulation-driven design process during the early stages of the cabin development cycle.

Simulation Tools: Driving the Future of Design
The Clemson University Deep Orange 3 program introduced future engineers to analysis software, enabling them to develop a novel sports car concept architecture.



By Dr. Paul Venhovens

Concept To Reality Winter 2013 Subscribe to C2R Magazine

The Use of MBD Modelling Techniques in the Design and Development of a Suspension System
This paper describes the use of Multi-body Dynamics (MBD) modelling techniques in the design and development of a suspension system for a novel autonomous vehicle. The general approach and philosophy is described, whereby MBD techniques are used in conjunction with an independent (parametric) whole vehicle handling simulation. This is supplemented with examples, showing how MotionSolve was used (in tandem with CarSim) to develop the suspension elasto-kinematic geometric properties to meet specific cascaded targets, to optimise a weighing strategy, to predict forces under a variety of quasi-static and dynamic loads, and to estimate response to track inputs.

Page: 1  2   3   4   5   6   7   8   9   10   11   12   13  

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe